Sound controls

Omnidirectional acoustic masking against airborne sound achieved by locally resonant sound material

  • Pendry, JB, Schurig, D. & Smith, DR Control of electromagnetic fields. Science 312, 1780–1782. https://doi.org/10.1126/science.1125907 (2006).

    ADS MathSciNet CAS Article PubMed MATH Google Scholar

  • Cummer, SA & Schurig, D. A path to acoustic masking. NJ Phys. 9, 45–45. https://doi.org/10.1088/1367-2630/9/3/045 (2007).

    Google Scholar article

  • Chen, H. & Chan, CT Three-dimensional acoustic masking using acoustic metamaterials. Appl. Phys. Lett. 91183518. https://doi.org/10.1063/1.2803315 (2007).

    ADS CAS Article Google Scholar

  • Norris, AN Acoustic Concealment Theory. proc. R. Soc. A math. Phys. Eng. Science. 464, 2411–2434. https://doi.org/10.1098/rspa.2008.0076 (2008).

    ADS MathSciNet CAS Article MATH Google Scholar

  • Farhat, M. et al. A way of homogenization towards square cylindrical acoustic layers. NJ Phys. ten115030. https://doi.org/10.1088/1367-2630/10/11/115030 (2008).

    Google Scholar article

  • Torrent, D. & Sánchez-Dehesa, J. Acoustic masking in two dimensions: a feasible approach. NJ Phys. ten063015. https://doi.org/10.1088/1367-2630/10/6/063015 (2008).

    Google Scholar article

  • Zhang, S., Xia, C. & Fang, N. Broadband acoustic cloak for ultrasonic waves. Phys. Rev. Lett. 106024301. https://doi.org/10.1103/PhysRevLett.106.024301 (2011).

    ADS CAS PubMed Article Google Scholar

  • Popa, B.-I., Zigoneanu, L. & Cummer, SA Experimental Acoustic Floor Cloak in Air. Phys. Rev. Lett. 106253901. https://doi.org/10.1103/PhysRevLett.106.253901 (2011).

    ADS CAS PubMed Article Google Scholar

  • Zigoneanu, L., Popa, B.-I. & Cummer, SA Three-dimensional broadband omnidirectional acoustic floor cape. Nat. Mater. 13, 352–355. https://doi.org/10.1038/nmat3901 (2014).

    ADS CAS PubMed Article Google Scholar

  • Can, W. et al. Three-dimensional broadband acoustic illusion cape for the sonic boundaries of curved geometry. Science. representing 636936. https://doi.org/10.1038/srep36936 (2016).

    ADS CAS PubMed Article PubMed Central Google Scholar

  • Alù, A. & Engheta, N. Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72016623. https://doi.org/10.1103/PhysRevE.72.016623 (2005).

    ADS CAS Article Google Scholar

  • Guild, MD, Alù, A. & Haberman, MR Cancellation of acoustic scattering from an elastic sphere. J. Acoust. Soc. A m. 129, 1355–1365. https://doi.org/10.1121/1.3552876 (2011).

    Announcements PubMed Article Google Scholar

  • Guild, MD, Haberman, MR & Alù, A. Plasmonic type acoustic cape made of a bilaminate shell. Phys. Rev. B 86104302. https://doi.org/10.1103/PhysRevB.86.104302 (2012).

    ADS CAS Article Google Scholar

  • Ammari, H., Kang, H., Lee, H. & Lim, M. Improving quasi-masking. Part II. The Helmholtz equation. Common. Math. Phys. 317, 485–502. https://doi.org/10.1007/s00220-012-1620-y (2013).

    ADS MathSciNet Article MATH Google Scholar

  • Wang, X. & Semouchkina, E. A route to efficient resonance-free masking using multilayer dielectric coating. Appl. Phys. Lett. 102113506. https://doi.org/10.1063/1.4796171 (2013).

    ADS CAS Article Google Scholar

  • Mirzaei, A., Miroshnichenko, AE, Shadrivov, IV & Kivshar, YS All-Dielectric Multilayer Cylindrical Structures for Invisibility Concealment. Science. representing 59574. https://doi.org/10.1038/srep09574 (2015).

    ADS CAS PubMed Article PubMed Central Google Scholar

  • Serna, A., Molina, LJ, Rivero, J., Landesa, L. & Taboada, JM Multilayered homogeneous dielectric filling for electromagnetic invisibility. Science. representing 813923. https://doi.org/10.1038/s41598-018-32070-5 (2018).

    ADS CAS PubMed Article PubMed Central Google Scholar

  • Farhat, M., Guenneau, S., Alù, A. & Wu, Y. Scattering cancellation technique for acoustically rotating objects. Phys. Rev. B 101174111. https://doi.org/10.1103/PhysRevB.101.174111 (2020).

    ADS CAS Article Google Scholar

  • Garcia-Chocano, VM et al. Acoustic cape for aerial sound by inverted design. Appl. Phys. Lett. 99074102. https://doi.org/10.1063/1.3623761 (2011).

    ADS CAS Article Google Scholar

  • Andkjær, J. & Sigmund, O. Low-contrast all-dielectric optical cloak optimized for topology. Appl. Phys. Lett. 98021112. https://doi.org/10.1063/1.3540687 (2011).

    ADS CAS Article Google Scholar

  • Lan, L., Sun, F., Liu, Y., Ong, CK & Ma, Y. Experimental demonstration of a unidirectional electromagnetic mantle designed by topology optimization. Appl. Phys. Lett. 103121113. https://doi.org/10.1063/1.4821951 (2013).

    ADS CAS Article Google Scholar

  • Yamada, T., Watanabe, H., Fujii, G. & Matsumoto, T. Topology optimization for a dielectric optical cloak based on an exact level-set approach. IEEE Trans. Mag. 49, 2073-2076. https://doi.org/10.1109/TMAG.2013.2243120 (2013).

    Article on Google Scholar Ads

  • Fujii, G., Watanabe, H., Yamada, T., Ueta, T. & Mizuno, M. Level-Based Topology Optimization for Optical Capes. Appl. Phys. Lett. 102251106. https://doi.org/10.1063/1.4812471 (2013).

    ADS CAS Article Google Scholar

  • Fujii, G. & Ueta, T. Topology-optimized carpet capes based on level-defined boundary expression. Phys. Rev. E 94043301. https://doi.org/10.1103/PhysRevE.94.043301 (2016).

    ADS MathSciNet PubMed Article Google Scholar

  • Nakamoto, K., Isakari, H., Takahashi, T. & Matsumoto, T. A level-based topological optimization of carpet masking devices with the boundary element method. Mech. Eng. J 4, 16–00268. https://doi.org/10.1299/mej.16-00268 (2017).

    Google Scholar article

  • Kishimoto, N., Izui, K., Nishiwaki, S. & Yamada, T. Optimal design of electromagnetic caps with multiple dielectric materials by topology optimization. Appl. Phys. Lett. 110201104. https://doi.org/10.1063/1.4983715 (2017).

    ADS CAS Article Google Scholar

  • Fujii, G., Takahashi, M. & Akimoto, Y. Acoustic cape designed by topological optimization for acoustic-elastic coupled systems. Appl. Phys. Lett. 118101102. https://doi.org/10.1063/5.0040911 (2021).

    ADS CAS Article Google Scholar

  • Jo, C., Jeong, J., Kwon, B.-J., Park, K.-C. & Oh, I.-K. Two-dimensional omnidirectional acoustic cape by axisymmetric cylindrical trellis. The movement of the waves 54, 157–169. https://doi.org/10.1016/j.wavemoti.2014.12.004 (2015).

    MathSciNet Google Scholar MATH Article

  • Liu, Z. et al. Locally resonant sound materials. Science 289, 1734–1736. https://doi.org/10.1126/science.289.5485.1734 (2000).

    ADS CAS PubMed Article Google Scholar

  • Foldy, LL The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers. Phys. Round. 67, 107–119. https://doi.org/10.1103/PhysRev.67.107 (1945).

    ADS MathSciNet Article MATH Google Scholar

  • Lax, M. Multiple wave scattering. Rev. Mod. Phys. 23, 287–310. https://doi.org/10.1103/RevModPhys.23.287 (1951).

    ADS MathSciNet Article MATH Google Scholar

  • Martin, Pennsylvania Multiple scattering: Interaction of temporal harmonic waves with N obstacles (Cambridge University Press, 2006).

    Book Google Scholar

  • Bousse, L., Dijkstra, E. & Guenat, O. High-density valve networks and interconnections for liquid switching. Hilton head 96272–275 (1996).

    Google Scholar

  • Kittel, C. & Holcomb, DF Introduction to solid-state physics. A m. J.Phys. 35122. https://doi.org/10.1119/1.1974177 (1967).

    Google Scholar article

  • Kraft, D. A software package for sequential quadratic programming. Technology. Rep. 28 (1988).

  • Kraft, D. Algorithm 733: TOMP-Fortran Modules for Optimal Control Calculations. ACM Trans. Math. Software (TOMS) 20, 262–281. https://doi.org/10.1145/192115.192124 (1994).

    MATH Google Scholar Article

  • Johnson, S. G. The NLopt Nonlinear Optimization Package.

  • Astley, RJ FE mode adaptation schemes for the exterior Helmholtz problem and their relation to the FE-DtN approach. Common. Number. Methods Eng. 12, 257–267. https://doi.org/10.1002/(SICI)1099-0887(199604)12:43.0.CO;2-8 (1996).

    MATH Google Scholar Article

  • Hecht, F. New development in freefem++. J. Number. Math. 20, 251–266. https://doi.org/10.1515/jnum-2012-0013 (2012).

    MathSciNet Google Scholar MATH Article

  • Henríquez, VC, García-Chocano, VM, and Sánchez-Dehesa, J. Viscothermal losses in double-negative acoustic metamaterials. Phys. Rev. Appl. 8014029. https://doi.org/10.1103/PhysRevApplied.8.014029 (2017).

    Article on Google Scholar Ads